CBSE QUESTION PAPER

MATHEMATICS

गणित

Class-XII

Time allowed: 3 hours

निर्धारित समय : 3 घण्टे

Maximum Marks: 100

अधिकतम अंक : 100

सामान्य निर्देश:

- (i) सभी प्रश्न अनिवार्य हैं।
- (ii) इस प्रश्न पत्र में **29** प्रश्न हैं जो चार खण्डों में विभाजित हैं : अ, ब, स तथा द । खण्ड अ में **4** प्रश्न हैं जिनमें से प्रत्येक **एक अंक** का है । खण्ड ब में **8** प्रश्न हैं जिनमें से प्रत्येक **दो अंक** का है । खण्ड द में **6** प्रश्न हैं जिनमें से प्रत्येक **चार अंक** का है । खण्ड द में **6** प्रश्न हैं जिनमें से प्रत्येक **चार अंक** का है । खण्ड द में **6** प्रश्न हैं जिनमें से प्रत्येक **छ: अंक** का है ।
- (iii) खण्ड अ में सभी प्रश्नों के उत्तर एक शब्द, एक वाक्य अथवा प्रश्न की आवश्यकतानुसार दिए जा सकते हैं।
- (iv) पूर्ण प्रश्न पत्र में विकल्प नहीं हैं। फिर भी चार अंकों वाले 3 प्रश्नों में तथा छ: अंकों वाले 3 प्रश्नों में आन्तरिक विकल्प है। ऐसे सभी प्रश्नों में से आपको एक ही विकल्प हल करना है।
- (v) कैलकुलेटर के प्रयोग की अनुमित **नहीं** है। यदि आवश्यक हो, तो आप लघुगणकीय सारणियाँ माँग सकते हैं।

General Instructions:

- (i) **All** questions are compulsory.
- (ii) The question paper consists of 29 questions divided into four sections A, B, C and D. Section A comprises of 4 questions of one mark each, Section B comprises of 8 questions of two marks each, Section C comprises of 11 questions of four marks each and Section D comprises of 6 questions of six marks each.
- (iii) All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the question.
- (iv) There is no overall choice. However, internal choice has been provided in 3 questions of four marks each and 3 questions of six marks each. You have to attempt only one of the alternatives in all such questions.
- (v) Use of calculators is **not** permitted. You may ask for logarithmic tables, if required.

SECTION A

प्रश्न संख्या 1 से 4 तक प्रत्येक प्रश्न 1 अंक का है।

Question numbers 1 to 4 carry 1 mark each.

1. यदि किसी 2×2 वर्ग आव्यूह A के लिए, $A({
m adj}\ A) = \begin{bmatrix} 8 & 0 \\ & \\ 0 & 8 \end{bmatrix}$ है, तो |A| का मान लिखिए।

If for any 2×2 square matrix A, A(adj A) = $\begin{bmatrix} 8 & 0 \\ 0 & 8 \end{bmatrix}$, then write the value of |A|.

2. 'k' का मान ज्ञात कीजिए जिसके लिए निम्नलिखित फलन x = 3 पर संतत है :

$$f(x) = \begin{cases} \frac{(x+3)^2 - 36}{x-3}, & x \neq 3 \\ & k \end{cases}, x = 3$$

Determine the value of 'k' for which the following function is continuous at x = 3:

$$f(x) = \begin{cases} \frac{(x+3)^2 - 36}{x-3} & , & x \neq 3 \\ & k & , & x = 3 \end{cases}$$

3. ज्ञात कीजिए :

$$\int \frac{\sin^2 x - \cos^2 x}{\sin x \cos x} \, dx$$

Find:

$$\int \frac{\sin^2 x - \cos^2 x}{\sin x \cos x} \ dx$$

4. समतलों 2x - y + 2z = 5 तथा 5x - 2.5y + 5z = 20 के बीच की दूरी ज्ञात कीजिए। Find the distance between the planes 2x - y + 2z = 5 and 5x - 2.5y + 5z = 20.

खण्ड ब

SECTION B

प्रश्न संख्या 5 से 12 तक प्रत्येक प्रश्न के 2 अंक हैं। Question numbers 5 to 12 carry 2 marks each.

- 5. यदि A कोटि 3 का एक विषम-सममित आव्यूह है, तो सिद्ध कीजिए कि $\det A = 0$. If A is a skew-symmetric matrix of order 3, then prove that $\det A = 0$.
- **6.** फलन $f(x) = x^3 3x$, $[-\sqrt{3}, 0]$ के लिए रोले के प्रमेय के प्रयोग से c का मान ज्ञात कीजिए।

Find the value of c in Rolle's theorem for the function $f(x) = x^3 - 3x$ in $[-\sqrt{3}, 0]$.

7. एक घन का आयतन 9 घन सेमी/से. की दर से बढ़ रहा है । जब घन की भुजा 10 सेमी है, तो उसके पृष्ठीय क्षेत्रफल में बढ़ोतरी की दर ज्ञात कीजिए ।

The volume of a cube is increasing at the rate of 9 cm³/s. How fast is its surface area increasing when the length of an edge is 10 cm?

8. दर्शाइए कि फलन $f(x) = x^3 - 3x^2 + 6x - 100$, \mathbb{R} पर वर्धमान है।

Show that the function $f(x) = x^3 - 3x^2 + 6x - 100$ is increasing on \mathbb{R} .

9. बिंदुओं P(2, 2, 1) तथा Q(5, 1, -2) को मिलाने वाली रेखा पर स्थित एक बिंदु का x-निर्देशांक 4 है । उसका z-निर्देशांक ज्ञात कीजिए ।

The x-coordinate of a point on the line joining the points P(2, 2, 1) and Q(5, 1, -2) is 4. Find its z-coordinate.

10. एक पासा, जिसके फलकों पर अंक 1, 2, 3 लाल रंग में लिखे हैं तथा 4, 5, 6 हरे रंग में लिखे हैं, को उछाला गया । माना घटना A है : "प्राप्त संख्या सम है" तथा घटना B है : "प्राप्त संख्या लाल है" । ज्ञात कीजिए कि क्या A तथा B स्वतंत्र घटनाएँ हैं ।

A die, whose faces are marked 1, 2, 3 in red and 4, 5, 6 in green, is tossed. Let A be the event "number obtained is even" and B be the event "number obtained is red". Find if A and B are independent events.

11. दो दर्जी, A तथा B, प्रतिदिन क्रमशः ₹ 300 तथा ₹ 400 कमाते हैं । A एक दिन में 6 कमीज़ें तथा 4 पैंटें सिल सकता है जबिक B प्रतिदिन 10 कमीज़ें तथा 4 पैंटें सिल सकता है । यह ज्ञात करने के लिए कि कम-से-कम 60 कमीज़ें तथा 32 पैंटें सिलने के लिए प्रत्येक िकतने दिन कार्य करें कि श्रम लागत कम-से-कम हो, रैखिक प्रोग्रामन समस्या के रूप में सूत्रबद्ध कीजिए ।

Two tailors, A and B, earn \neq 300 and \neq 400 per day respectively. A can stitch 6 shirts and 4 pairs of trousers while B can stitch 10 shirts and 4 pairs of trousers per day. To find how many days should each of them work and if it is desired to produce at least 60 shirts and 32 pairs of trousers at a minimum labour cost, formulate this as an LPP.

12. ज्ञात कीजिए :

$$\int \frac{\mathrm{dx}}{5 - 8x - x^2}$$

Find:

$$\int \frac{dx}{5 - 8x - x^2}$$

खण्ड स

SECTION C

प्रश्न संख्या 13 से 23 तक प्रत्येक प्रश्न के 4 अंक हैं । Question numbers 13 to 23 carry 4 marks each.

- 13. यदि $\tan^{-1}\frac{x-3}{x-4}+\tan^{-1}\frac{x+3}{x+4}=\frac{\pi}{4}$ है, तो x का मान ज्ञात कीजिए। If $\tan^{-1}\frac{x-3}{x-4}+\tan^{-1}\frac{x+3}{x+4}=\frac{\pi}{4}$, then find the value of x.
- 14. सारणिकों के गुणधर्मों का प्रयोग कर, सिद्ध कीजिए कि

$$\begin{vmatrix} a^{2} + 2a & 2a + 1 & 1 \\ 2a + 1 & a + 2 & 1 \\ 3 & 3 & 1 \end{vmatrix} = (a - 1)^{3}$$

अथवा

आव्यूह A ज्ञात कीजिए कि

$$\begin{pmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{pmatrix} \mathbf{A} = \begin{pmatrix} -1 & -8 \\ 1 & -2 \\ 9 & 22 \end{pmatrix}$$

Using properties of determinants, prove that

$$\begin{vmatrix} a^{2} + 2a & 2a + 1 & 1 \\ 2a + 1 & a + 2 & 1 \\ 3 & 3 & 1 \end{vmatrix} = (a - 1)^{3}$$

 \mathbf{OR}

Find matrix A such that

$$\begin{pmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{pmatrix} A = \begin{pmatrix} -1 & -8 \\ 1 & -2 \\ 9 & 22 \end{pmatrix}$$

15. यदि $x^y + y^x = a^b$ है, तो $\frac{\mathrm{d}y}{\mathrm{d}x}$ ज्ञात कीजिए।

अथवा

यदि
$$e^y(x+1) = 1$$
 है, तो दर्शाइए कि $\frac{d^2y}{dx^2} = \left(\frac{dy}{dx}\right)^2$.

If $x^y + y^x = a^b$, then find $\frac{dy}{dx}$.

OR

If
$$e^{y}(x + 1) = 1$$
, then show that $\frac{d^{2}y}{dx^{2}} = \left(\frac{dy}{dx}\right)^{2}$.

16. ज्ञात कीजिए:

$$\int \frac{\cos \theta}{(4+\sin^2 \theta)(5-4\cos^2 \theta)} \ d\theta$$

Find:

$$\int \frac{\cos \theta}{(4+\sin^2 \theta)(5-4\cos^2 \theta)} \ d\theta$$

17. मान ज्ञात कीजिए :

$$\int_{0}^{\pi} \frac{x \tan x}{\sec x + \tan x} dx$$

अथवा

मान ज्ञात कीजिए:

$$\int_{1}^{4} \{ |x-1| + |x-2| + |x-4| \} dx$$

Evaluate:

$$\int_{0}^{\pi} \frac{x \tan x}{\sec x + \tan x} dx$$

Evaluate:

$$\int_{1}^{4} \{ |x-1| + |x-2| + |x-4| \} dx$$

- 18. अवकल समीकरण $(\tan^{-1} x y) dx = (1 + x^2) dy$ को हल कीजिए। Solve the differential equation $(\tan^{-1} x - y) dx = (1 + x^2) dy$.
- **19.** दर्शाइए कि बिंदु A,B,C जिनके स्थिति सदिश क्रमशः $2\hat{i}-\hat{j}+\hat{k}$, $\hat{i}-3\hat{j}-5\hat{k}$ तथा $3\hat{i}-4\hat{j}-4\hat{k}$ हैं, एक समकोण त्रिभुज के शीर्ष हैं । अतः त्रिभुज का क्षेत्रफल ज्ञात कीजिए ।

Show that the points A, B, C with position vectors $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} - 3\hat{j} - 5\hat{k}$ and $3\hat{i} - 4\hat{j} - 4\hat{k}$ respectively, are the vertices of a right-angled triangle. Hence find the area of the triangle.

20. λ का मान ज्ञात कीजिए ताकि चार बिंदु जिनके स्थिति सदिश $3\hat{i} + 6\hat{j} + 9\hat{k}$, $\hat{i} + 2\hat{j} + 3\hat{k}$, $2\hat{i} + 3\hat{j} + \hat{k}$ तथा $4\hat{i} + 6\hat{j} + \lambda\hat{k}$ समतलीय हैं।

Find the value of λ , if four points with position vectors $3\hat{i} + 6\hat{j} + 9\hat{k}$, $\hat{i} + 2\hat{j} + 3\hat{k}$, $2\hat{i} + 3\hat{j} + \hat{k}$ and $4\hat{i} + 6\hat{j} + \lambda\hat{k}$ are coplanar.

21. 4 कार्ड हैं जिन पर संख्याएँ 1, 3, 5 तथा 7 अंकित हैं, एक कार्ड पर एक संख्या । दो कार्ड प्रतिस्थापना किए बिना यादृच्छया निकाले गए । माना X निकाले गए दो कार्डों पर लिखी संख्याओं का योगफल है । X का माध्य तथा प्रसरण ज्ञात कीजिए ।

There are 4 cards numbered 1, 3, 5 and 7, one number on one card. Two cards are drawn at random without replacement. Let X denote the sum of the numbers on the two drawn cards. Find the mean and variance of X.

22. एक विद्यालय के विद्यार्थियों के लिए ज्ञात है कि 30% विद्यार्थियों की 100% उपस्थिति है तथा 70% विद्यार्थी अनियमित हैं । पिछले वर्ष के परिणाम सूचित करते हैं कि उन सभी विद्यार्थियों, जिनकी उपस्थिति 100% है, में से 70% ने वार्षिक परीक्षा में A ग्रेड पाया तथा अनियमित विद्यार्थियों में से 10% ने A ग्रेड पाया । वर्ष के अंत में, विद्यालय में से एक विद्यार्थी यादृच्छया चुना गया तथा यह पाया गया कि उसका A ग्रेड था । ग्रायिकता क्या है कि उस विद्यार्थी की 100% उपस्थिति है ? क्या नियमितता केवल विद्यालय में आवश्यक है ? अपने उत्तर के पक्ष में तर्क दीजिए।

Of the students in a school, it is known that 30% have 100% attendance and 70% students are irregular. Previous year results report that 70% of all students who have 100% attendance attain A grade and 10% irregular students attain A grade in their annual examination. At the end of the year, one student is chosen at random from the school and he was found to have an A grade. What is the probability that the student has 100% attendance? Is regularity required only in school? Justify your answer.

23. Z = x + 2y का अधिकतमीकरण कीजिए

निम्न अवरोधों के अंतर्गत

$$x + 2y \ge 100$$

$$2x - y \le 0$$

$$2x + y \le 200$$

$$x, y \ge 0$$

उपर्युक्त रैखिक प्रोग्रामन समस्या को आलेख की सहायता से हल कीजिए। Maximise Z = x + 2y

subject to the constraints

$$x + 2y \ge 100$$

$$2x - y \le 0$$

$$2x + y \le 200$$

$$x, y \ge 0$$

Solve the above LPP graphically.

खण्ड द

SECTION D

प्रश्न संख्या 24 से 29 तक प्रत्येक प्रश्न के 6 अंक हैं। Question numbers 24 to 29 carry 6 marks each.

24. गुणनफल
$$\begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$$
 ज्ञात कीजिए तथा इसका प्रयोग

समीकरण निकाय $x-y+z=4,\ x-2y-2z=9,\ 2x+y+3z=1$ को हल करने में कीजिए।

Determine the product
$$\begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \end{bmatrix}$$
 and use it to solve the system of equations $x - y + z = 4$, $x - 2y - 2z = 9$, $2x + y + 3z = 1$.

solve the system of equations x - y + z = 4, x - 2y - 2z = 9, 2x + y + 3z = 1.

25. दर्शाइए कि f एकैकी तथा आच्छादक है । f का प्रतिलोम फलन ज्ञात कीजिए । अत: $f^{-1}(0)$ ज्ञात कीजिए तथा x ज्ञात कीजिए ताकि $f^{-1}(x) = 2$.

अथवा

 $\mathbf{A} = \mathbf{Q} \times \mathbf{Q}$ तथा * \mathbf{A} पर एक द्विआधारी संक्रिया है जो माना (a, b) * (c, d) = (ac, b + ad) द्वारा परिभाषित है, सभी $(a, b), (c, d) \in A$ के लिए । ज्ञात कीजिए कि क्या * क्रमविनिमेय तथा सहचारी है । तब, A पर * के सापेक्ष

- A में तत्समक अवयव ज्ञात कीजिए। (i)
- A के व्युत्क्रमणीय अवयव ज्ञात कीजिए। (ii)

Consider $f: \mathbb{R} - \left\{-\frac{4}{3}\right\} \to \mathbb{R} - \left\{\frac{4}{3}\right\}$ given by $f(x) = \frac{4x+3}{3x+4}$. Show that f is

bijective. Find the inverse of f and hence find $f^{-1}(0)$ and x such that $f^{-1}(x) = 2$.

OR

Let $A = \mathbb{Q} \times \mathbb{Q}$ and let * be a binary operation on A defined by (a, b) * (c, d) = (ac, b + ad) for $(a, b), (c, d) \in A$. Determine, whether * is commutative and associative. Then, with respect to * on A

- (i) Find the identity element in A.
- (ii) Find the invertible elements of A.
- 26. दर्शाइए कि एक बंद घनाभ, जिसका आधार वर्गाकार है तथा आयतन दिया गया है, का पृष्ठीय क्षेत्रफल न्यूनतम होगा, जब यह एक घन है।

Show that the surface area of a closed cuboid with square base and given volume is minimum, when it is a cube.

27. समाकलन विधि के प्रयोग से उस त्रिभुज ABC का क्षेत्रफल ज्ञात कीजिए जिसके शीर्षों के निर्देशांक A(4,1), B(6,6) तथा C(8,4) हैं।

अथवा

सरल रेखा 3x-2y+12=0 तथा परवलय $4y=3x^2$ के बीच घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए ।

Using the method of integration, find the area of the triangle ABC, coordinates of whose vertices are A (4, 1), B (6, 6) and C (8, 4).

OR

Find the area enclosed between the parabola $4y = 3x^2$ and the straight line 3x - 2y + 12 = 0.

28. अवकल समीकरण $(x-y) \frac{dy}{dx} = (x+2y)$ का विशिष्ट हल ज्ञात कीजिए, दिया गया है कि y=0 जब x=1 है।

Find the particular solution of the differential equation $(x-y) \; \frac{dy}{dx} = (x+2y), \; \text{given that} \; y=0 \; \text{ when } x=1.$

29. उस बिंदु के निर्देशांक ज्ञात कीजिए जहाँ बिंदुओं (3, -4, -5) तथा (2, -3, 1) से होकर जाती रेखा, बिंदुओं (1, 2, 3), (4, 2, -3) तथा (0, 4, 3) द्वारा बने समतल को काटती है।

अथवा

एक चर समतल, जो मूल-बिंदु से 3p की अचर दूरी पर स्थित है, निर्देशांक अक्षों को $A,\ B,\ C$ पर काटता है । दर्शाइए कि त्रिभुज ABC के केन्द्रक का बिंदुपथ $\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{1}{p^2}$ है ।

Find the coordinates of the point where the line through the points (3, -4, -5) and (2, -3, 1), crosses the plane determined by the points (1, 2, 3), (4, 2, -3) and (0, 4, 3).

OR

A variable plane which remains at a constant distance 3p from the origin cuts the coordinate axes at A, B, C. Show that the locus of the centroid of triangle ABC is $\frac{1}{x^2} + \frac{1}{v^2} + \frac{1}{z^2} = \frac{1}{p^2}$.